Planetary Science Laboratory

Department of Earth and Environmental Sciences

Department of Physics and Astronomy

University of Rochester

team

I am a planetary scientist and an assistant professor at the Department of Earth and Environmental Sciences (primary) and Physics and Astronomy (secondary) at the University of Rochester.

We are studying origin and evolution of planets and moons in the solar system and beyond.

         

Miki Nakajima

Assistant Professor

Scott D. Hull

Graduate Student

The Moon likely formed from the gravitational collapse of a dust and vapor disk created by a "giant impact" event in which the Earth and a Mars-sized body collided. I use smoothed particle hydrodynamics (SPH) simulations to model real-time giant impact events with the Earth, and then assess both the dynamics and the geochemical outcomes of the model. These studies have implications for understanding the energies and dynamics required to form the observable Earth-Moon system and for understanding the Mars-Moons sytem, which may have formed in a similar fashion. 

Our group is looking for students and postdocs who are excited to explore Earth, the solar system and beyond! Please apply by Jan 15, 2020.

         

Jeremy Atkins

Undergraduate Student

I am a senior at the University of Rochester studying Physics & Astronomy and Mathematics. I have been working on simulations and analysis exploring lunar seed formation in protolunar disk models, which we can use as a tool to differentiate between Earth-Theia impact models.

Alumni

Tyler Labree

REU summer student

 
 
 

classes

Fundamental physics and numerical modeling of planetary interiors (2019, Spring)  
Geodynamics (2019, Fall)
Designing your space mission (2020, Spring) 

simulations

moon formation

According to the canonical model, the proto-Earth was hit by a Mars-sized object approximately 4.5 billion years ago. The movie below shows entropy of the mantle (the extent of shock heating) in the red-yellow colors and iron core in grey. We developed a smoothed particle hydrodynamics (SPH) code from the ground up where a fluid is expressed as a collection of spherical particles.

Feel free to download the movie from here: [canonical - entropy] 

Please cite Nakajima and Stevenson (2014, 2015).

It may take a few seconds to load the movies ... please stay patient!

A number of impact models have been suggested, including (1) canonical model, where the proto-Earth is hit by a Mars-sized impactor, (2) fast-spinning Earth model, where the rapidly rotating proto-Earth is hit by a small impactor, (3) half-Earths model, where two half-Earth objects collide, and (4) multiple impact model, where the Moon formed out of multiple small impacts.

We perform numerical simulations to represent (1)-(3) models as below. The green and yellow represent the mantle of the proto-Earth and impactor, whereas grey and white represent their iron cores, respectively.

Feel free to download the movie from here:

[canonical - material]  [fast-spinning Earth - material]  [half-Earths - material] 

Please cite Nakajima and Stevenson (2014, 2015).

 
 

publications

Nakajima, M., Golabek, G. J., Wuennemann, K., Rubie, D. C., Burger, C., Manske, L., Melosh, H. J., Jacobson, S. A., Nimmo, F., Hull, S. D. Scaling laws for the geometry of an impact-induced magma ocean. Submitted. 

Quillen, A. C., Martini, L., and Nakajima, M., 2019. Near/far side asymmetry in the tidally heated Moon. Icarus, 329, 182-196. [ScienceDirect]

Nakajima, M., and Stevenson, D. J., 2018. Inefficient volatile loss from the Moon-forming disk: reconciling the giant impact hypothesis and a wet Moon. Earth and Planetary Science Letters, 478, 117-126. [ScienceDirect]

Jacobson, S. A., Rubie, D. C., Hernlund, J., Morbidellie, A., and Nakajima, M., 2017. Formation, Stratification and Mixing of the Cores of Earth and Venus. Earth and Planetary Science Letters, 474, 375-386. [ScienceDirect]

Hauri, E. H., Saal, A. E., Nakajima, M., Anand, M., Rutherford, M. J., Van Orman, J. A., and Le Voyer, M., 2017. Origin and Evolution of Water in the Moon's Interior. Annual Review of Earth and Planetary Sciences, 45, 89-111. [Annual Reviews]

Nakajima, M., and Ingersoll, A. P., 2016. Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus, 272, 309-318. [ScienceDirect]

Ingersoll, A. P., and Nakajima, M., Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus, 272, 319-326. [ScienceDirect]

Nakajima, M., and Stevenson, D. J., 2015. Melting and Mixing States of the Earth’s Mantle after the Moon-Forming Impact, Earth and Planetary Science Letters, 427, 286-95. [ScienceDirect]

[arXiv]

 

Nakajima, M., Stevenson, D. J., 2014. Investigation of the Initial State of the Moon- Forming Disk: Bridging SPH Simulations and Hydrostatic Models. Icarus, 233, 259-267. [ScienceDirect] [arXiv]

Nakajima, M., 2016. Core Science: Stratified by a Sunken Impactor. Nature Geoscience, News & Views, 9, 734-735. [Nature Geoscience]

Nakajima, M., and Genda, H., Asphaug, E. I., and Ida, S. Constraints on Exomoon Formation.

Nakajima, M., and Stevenson, D. J. Dynamical mixing of planetary cores by giant impacts.

peer-reviewed

other publications

in preparation

contact

Phone: (585) 276-6617

Address:  227 Hutchison Hall, P.O. Box 270221

Rochester NY, 14627

  • Black Facebook Icon
  • Black Pinterest Icon
  • Black Instagram Icon
​Image credit: NASA, University of Rochester, DeNA